Ms. Gentry's ~Lesson Plans Week of: April 15 ${ }^{\text {th }}$

\begin{tabular}{|c|c|c|c|}
\hline \& PRE-ALGEBRA \(6^{\text {TH }}\) \& GEOMETRY \(1^{\text {ST }}, 2^{\text {ND }}, 3^{\mathrm{RD}}, 7^{\text {th }}\) \& ALGEBRA II \(4^{\text {th }}\) \\
\hline \[
\begin{aligned}
\& \hline \mathbf{M} \\
\& \mathbf{O} \\
\& \mathbf{N} \\
\& \mathbf{D} \\
\& \mathbf{A} \\
\& \mathbf{Y}
\end{aligned}
\] \& \begin{tabular}{l}
Go over test and start Unit 9 \\
Rates/Ratios/unit rates Express ratios/rates as fractions in simplest form. Express ratios as unit rates and apply in grocery/economic situations. Assign p 435 15-32, 35, 38, 39
\end{tabular} \& Geogebra transformations - Discover coordinate rules for reflections over the \(x\) and \(y\) axis and over \(y=x\) and \(y=-x\). Discover rules for rotations about the origin for 90, 180 and 270 degrees. \& \begin{tabular}{l}
ACT PRACTICE \\
Finish work on:Graph sequences and write series using summation notation. Find the sum of a finite series. Assign practice problems after working a variety of example in class. P. 438 3-27 every \(3^{\text {rd }} .38-50\) evens, 63,65 F.IF. 3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers
\end{tabular} \\
\hline \[
\begin{aligned}
\& \mathbf{T} \\
\& \mathbf{U} \\
\& \mathbf{E} \\
\& \mathbf{S} \\
\& \mathbf{D} \\
\& \mathbf{A} \\
\& \mathbf{Y}
\end{aligned}
\] \& Simple probability hands on activity finding probabilities and setting up ratios. Find total number of outcomes and compare theoretical and experimental probability. \& Apply coordinate rules for reflectionsreflect figures by paper/pencil method. Use matrices to reflect also. Work examples together in class and assign practice problems. 9.3 G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using graph paper, tracing paper or geometric software. Specify a sequence of transformations that will carry a given figure onto another. \& Analyze arithmetic sequences and series. Use and write rules for the nth term of an arithmetic sequence. Find the sum of finite arithmetic series. Assign practice problems on page 446: 5-10,12-26 evens after working a variety of sample problems together. after working a variety of sample problems together. F.BF. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between two forms. \\
\hline \[
\begin{aligned}
\& \hline \mathbf{W} \\
\& \mathbf{E} \\
\& \mathbf{D} \\
\& \mathbf{N} \\
\& \mathbf{E} \\
\& \mathbf{S} \\
\& \mathbf{D} \\
\& \mathbf{A} \\
\& \mathbf{Y}
\end{aligned}
\] \& Simple probability Find different probabilities for dice, marble and other applications. Make a sample space of sums when 2 dice are rolled. Assign P 442: 16-31 \& \begin{tabular}{l}
Juniors ACT testing \\
Apply coordinate rules for rotations and reflections to rotate figures by paper/pencil method. Use matrices to rotate and reflect also. Work examples together in class and assign practice problems. p 602: 6-8, 12-20 evens G.CO. 5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using graph paper, tracing paper or geometric software. Specify a sequence of transformations that will carry a given figure onto another.
\end{tabular} \& Juniors ACT testing Sophomores take Math MAPS test \\
\hline T
H
H
U
R
S
S
D
A

\mathbf{Y} \& Proportions - set up and solve proportions to solve a variety of problems. Use cross product property to solve. Apply in real world problems. Assign p. 446 15-42, 44,45 \& | Perform and identify dilations. Use coordinate rules and scalar multiplication to dilate figures. Find scale factors when given a dilation. Work practice problems together. P 629: 16,18,20 |
| :--- |
| G-SRT-1 Verify experimentally the properties of dilations given by a center and a scale factor. | \& Analyze arithmetic sequences and series. Use and write rules for the nth term of an arithmetic sequence. Find the sum of finite arithmetic series. Assign practice problems on page 446: 30-50evens, 63,64 after working a variety of sample problems together. F.BF. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between two forms.

\hline $$
\begin{aligned}
& \mathbf{F} \\
& \mathbf{R} \\
& \mathbf{I} \\
& \mathbf{D} \\
& \mathbf{A} \\
& \mathbf{Y}
\end{aligned}
$$ \& Write and solve proportions to represent direct variation application problems. Use labels to guide correct set up. Enrichment page 9-4 and problem bank. \& Start matrix animation project- use matrices to perform a variety of transformations on a given object to model the animation process. Write polygon matrix for the chosen skeleton of figure and perform rotations, reflections and translations. \& Analyze geometric sequences and series. Use and write rules for the nth term of a geometric sequence. Find the sum of finite geometric series. Use to solve practical application problems. Work examples together and assign problems on page 454: 3-36 every ${ }^{\text {rd }}$

\hline
\end{tabular}

