Metuchen STEM in 2026: Imagining the Possibilities

Inquiry:

What would the best STEM program imaginable and possible look like in 2026 in Metuchen?

STEM Statistics

What does a STEM classroom look like?

Teachers

Facilitator rather than a lecturer

Guide students through real-world problems

Interdisciplinary Lessons

Students

Work collaboratively

Solve real-world problems

Engage in inquiry

Self-motivated

Classroom Environment

Classroom arranged in a way that facilitates group work

Computers or other instructional technology easily accessible

Florida STEM:

STEM education is the intentional integration of science, technology, engineering, and mathematics, and their associated practices to create a student-centered learning environment in which students investigate and engineer solutions to problems, and construct evidence-based explanations of real-world phenomena with a focus on a student's social, emotional, physical, and academic needs through shared contributions of schools, families, and community partners.

Quantifying the Range of STEM

- We recognize that STEM may be seen as a range of integration and application.
 - A science class without any of the other STEM components may be seen as STEM.
 - A fully integrated science class with all STEM components may also be seen as STEM.
 - STEM 1.0, 2.0, 3.0, 4.0?
 - How do we quantify our program?

STEM 2.0, 3.0, 4.0?

STEM Disciplines 2.0

Science and Technology

Science and Engineering

Science and Math

Technology and Engineering

Technology and Math

Engineering and Math

STEM Disciplines 3.0

Science, Technology, and Engineering

Science, Engineering, and Math

Technology, Engineering, and Math

Math, Technology, and Science

www.FLDOE.org

STEM Disciplines 4.0

Integrated Science, Technology, Engineering, and Math Programs

Examples: STEM 2.0

STEM Disciplines 2.0

Science and Technology

Science and Engineering

Science and Math

Technology and Engineering

Technology and Math

Engineering and Math

Integrating two disciplines

A science class uses computers to research a problem and develop a presentation

A science lesson utilizes and embeds algebraic standards to teach a lesson

A math class uses an online graphing program to solve problems and collaborate on solutions.

Examples: STEM 3.0

STEM Disciplines 3.0

Science, Technology, and Engineering

Science, Engineering, and Math

Technology,
Engineering, and Math

Math, Technology, and Science

Integrating three disciplines

A science class uses computers to research a problem and develop a presentation. Groups use engineering processes to develop a solution for a problem, modify the solution based on testing and research, and modify the solution.

A science lesson utilizes and embeds algebraic standards to teach a lesson, then uses programmable calculators to calculate speed from the slope of the line.

Examples: STEM 4.0

STEM Disciplines 4.0

Integrated Science, Technology, Engineering, and Math Programs

Integrating 4 disciplines:

A Science class examines data using statistics, then uses computers to research a problem and develop a presentation. Groups use engineering processes to develop a solution for a problem, modify the solution based on testing and research, and modify the solution.

Brainstorm Possible Solutions for Metuchen: Chatham?

Brainstorm Possible Solutions for Metuchen STEM

Curriculum - Chatham Model / Metuchen's Inquiry-Based Research Process

- Inquiry-Based Research Process
 - ELA
 - Social Studies 2018-2019
- STREAM Design/Engineering Process
- Problem Solving Process
 - K-5 Math
 - EMS Computer Science
 - Social Problem Solving

Brainstorm Possible Solutions for Metuchen: Vernon?

Brainstorm Possible Solutions for Metuchen STEM

<u>Instruction</u> - Florida 4.0 & Vernon Models

- Inquiry-Based Research
- Real World Problem Solving
- Experiential / Internships

<u>Assessment</u> - Vernon Model

- Performance Based
- Outside Assessment/ Certification

Moss and CES Computer Science Fundamentals (Gr. K-5)

Computer Science Fundamentals for Elementary Schools

For pre-readers in elementary school classrooms

Course A

An introduction to computer science for pre-readers.

Ameri 4

Course B

An introduction to computer science for pre-readers. (Similar to Course A, but with more variety for older students.)

Ages: 5-8

For older students in elementary school classrooms

Course C

Learn the basics of computer science and create your own art, stories, and games.

Ages: 6-10

Course D

Quickly cover concepts from Course C, then go further with algorithms, nested loops, conditionals, and more.

Ages: 7-11

Course E

Quickly cover concepts in Course C & D and then go further with functions.

Ages: 8-12

Course F

Learn all the concepts in Computer Science Fundamentals and create your own art, story or game.

Ages: 9-13

EMS Computer Science Discoveries (Gr. 6-8)

Curriculum Overview

+

2026 MHS Computer Science

For students who completed Algebra 1 or Exploring Computer Science

Suggested 4 year sequence

AP Computer Science Principles

Computer Programming

AP Computer Science A

Gaming and Design Thinking

303 - Game Design for Computer Science and Design Thinking
(JavaScript, HTML, CSS, Unity)

MHS Computer Science

Adopting Project Lead the Way - Computer Science

Computer Science empowers students to become creators, instead of merely consumers, of the technology all around them. --- engages students in collaborative projects that help them develop in-demand computer science knowledge as well as transportable skills like creative thinking and communication. And whether they're creating an online art gallery or using automation to process and analyze DNA-sequence data, ---- Computer Science students are seeing how their learning connects to the real world.

Computer Science Essentials

AP Computer Science Principles

AP Computer Science A

Cybersecurity

+ MHS Science

Modern Sequence

Honors Sequence **Electives**

Modern Biology

Honors Biology

STEM Capstone

Honors Health Science

Modern Chemistry Honors Chemistry AP Physics 2

AP Chemistry

Modern Physics

AP Physics 1

AP Biology

AP Environmental

= Existing Course

= Modified Course

= New Course

STEM at MHS: Elective Courses

- Capstone for Modern Sequence: All standards covered. Free to design application oriented STEM course. Possible ideas:
 - a. Environmental Problem Solving
 - b. Engineering Design
 - c. Bioethics
 - d. Sustainability: manufacturing, energy use, farming, water use, resources, etc...
 - e. Curriculum Planning throughout next year.
- Health Science course: align with Career Cluster to enhance "real world" applications and provide practical art within science. Curriculum planning this summer.
- 3. AP Options remain.
- 4. Engineering: new staff being hired.
- 5. Robotics
- 6. Waksman Science Scholars Program: DNA Research

As we proceed: investigate iSTEM, Project Lead the Way and programs in other districts through site visits.

+MHS Career Sequences

Health

Engineering

Business and Technology

Drafting/CAD

Architecture

Honors Health Science

Woods Design

Home
Construction/

Anatomy/ Physiology Engineering & Technology

STEM or Project Lead the Way Sequence

Medical Course

Robotics

Digital Graphics I and II

Digital Marketing and Bus. Info. Mgt.

Entrepreneurship

= Existing Course

= Modified Course

= New Course

We are increasing STEM and NGSS alignment within our classrooms

Students engage in STEM activities in science in every unit.

In Kindergarten we...

Plant a butterfly garden.

In Grade 1 we...

Build terrariums to study insects and plants.

In Grade 2 we design, build and test apple baskets and sailboats

In Grade 3 we plan to

Design a weather shelter from recycled materials

And in Grade 4 we

Develop safe locations to build houses.

In Grade 5 we

Build and redesign a car

Design and build Rube Goldberg devices

In Grade 6 we

Calculate how to reduce our carbon footprint

In Grade 7 we

Propose ways to limit negative impacts on ecosystems

The Monarch Project: grow and release Monarch butterflies. Study them to learn ways to protect them.

In Grade 8 we

Use chemistry to design a device to release or absorb thermal energy.

In Grade 5-7 G&T we

Engage in design projects (5)

Design Future Cities

Design and build robots

Science STEM at MHS: Meet NGSS in Grades 9-11

1. Biology:

- a. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.
- b. Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.
- Evaluate diets in light of learning about biological processes.

2. Chemistry

- Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.
- b. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.
- c. Develop a quantitative model for determining carbon footprint.

3. Physics

- a. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimized the force on a macroscopic object during collision.
- b. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

Metuchen's Proposed 8 Year STEM Action Plan:

Metuchen's Proposed 8 Year STEM Action Plan:

To be researched for future: Internships, Career Technical Education Dual Credit, Certification & Assessment Possibilities

Computer Science Certifications

Medical Field Certifications

Adobe Certification

Emergency/Clinical (EMT)

Computer Programming Job Ready Cert

Internships at sporting events?

Computer Science Dual Credit (PLTW)

Computer Science Internship:

Essentials

Metuchen Tech Department Senior Interns (IT

support & Summer work)

Principles

Outside Assessments:

AP Comp Science

iSTEM?

Cyber-Security