Algebra 2

Instructor(s):

Christin Dubois - Room 114 christin.dubois@schools.hermon.net
Ronda Beck - Room 206 ronda.beck@schools.hermon.net

Course Description:

This college preparatory course will include an examination of linear relations and functions, quadratic, polynomial and radical functions, advanced functions and relations, and linear programming. Students who successfully complete this course will be prepared for College Technical Math I, Precalculus, Statistics, or a college level Algebra or Precalculus course. Students planning to enroll in AP Precalculus should enroll in Honors Algebra II.

Course Length/Credit
2 semesters/ 1 credit

Unit 1	Linear Functions and Systems of Equations
Summary	This unit will review the essential skills of Algebra 1 that are needed in Algebra 2. Topics include: functions, writing and graphing linear equations, and systems of equations.

Graduation Standards: (the number of the standard is referenced in the performance indicators listed in each unit.)

HS.M.1A Applies properties of real numbers and quantitative reasoning.
HS.M.2A Solves polynomial, rational, radical, and transcendental equations \& systems of equations.

Performance
Indicators
Assessed in Unit

- AR.A. 2 - Write expressions in equivalent forms to reveal information and to solve problems.
- AR.A. 7 - Create equations and/or inequalities that describe numbers and relationships.
- AR.A. 10 - Solve systems of equations.
- AR.A. 11 - Represent and solve equations and inequalities graphically.
- AR.A. 14 - Analyze functions using different representations.

Supporting Performance Indicators

- AR.A. 15 - Build a function that models a relationship between two quantities.
- QR.A. 3 - Reason quantitatively and use units to solve problems.

Understandings:		Students will know...	Students will be able to...
- The different forms of linear equations and how they are applied to solving problems. - The different methods of solving systems of equations and which ones are most appropriate when solving problems.		- How to evaluate functions. - How to represent functions using multiple representations. - How to convert linear equations from standard form to slope-intercept form, and vice versa. - How to calculate x and y-intercepts and use those points to graph the equations. - How to identify equations that are parallel and perpendicular. - How to solve systems of equations by graphing, substitution, and elimination. - How to apply systems of equations to real life situations.	- Make sense of problems and persevere in solving them. - Model with mathematics. - Use appropriate tools strategically.
Unit 2	Radical Expressions \& Equations		
Summary	In this unit, studen factorizations of n expression will be expressions as exp Properties of expo Negative exponen radicals.	ll simplify radical expressions. rs and simple square roots, as w in arithmetic operations. Stude ons with rational exponents and will be revisited, as students wo be discussed. Students will also	will create prime s nth roots. Radical will represent radical nalize denominators. with rational exponents. ve equations involving
Graduation Standards: (the number of the standard is referenced in the performance indicators listed in each unit.)			
HS.M.1A Applies properties of real numbers and quantitative reasoning. HS.M.2.A Solves polynomial, rational, radical, and transcendental equations \& systems of equations.			
Performance Indicators Assessed	- QR.A.1- Extend the properties of exponents to rational exponents. - QR.A. 2 - Use properties of rational and irrational numbers - QR.A. 4 - Perform arithmetic operations with complex numbers.		

	AR.A. 17 - Construct and compare linear, quadratic, and exponential models and solve problems.		
Understandings:		Students will know...	Students will be able to...
- Soluti equati variou - Some equati - The re zeros	to quadratic can be found using thods. tions to quadratic may be complex. nship between solutions.	- How to factor quadratic equations. - How to identify special products when factoring. - How to graph quadratic functions and identify the solutions from the graph. - Use the quadratic formula to solve quadratic equations. - Compute solutions to quadratic equations involving complex numbers. - How to solve quadratic equations by completing the square and by using the square root property. (Honors)	- Reason abstractly and quantitatively. - Model with mathematics. - Use appropriate tools strategically. - Attend to precision.
Unit 5	Polynomial \& P	lynomial Expressions	
Summary	In this unit studen analyze and evalu zeros of polynomi	will add, subtract, multiply, divide, polynomial functions. Students will functions and sketch their graphs.	nd factor polynomials. They will identify the end behavior and

Graduation Standards: (the number of the standard is referenced in the performance indicators listed in each unit.)

HS.M.2A Solves polynomial, rational, radical, and transcendental equations \& systems of equations. HS.M.2B Understands and analyzes polynomial, rational, radical, and transcendental functions.

Performance Indicators Assessed in Unit	AR.A.3-Perform arithmetic operations on polynomials.
AR.A.4- Understand the relationship between zeros and factors of polynomials.	
AR.A.5 $(+)$ - Use polynomial identities to solve problems.	

Understandings:		Students will know...	Students will be able to...
- How key features of a polynomial function can be used to create graphs. - How the degree of a polynomial affects the shape of the graph and its end behavior. - How techniques of factoring a quadratic function can be extended to higher degree models.		- How to perform operations with and simplify with polynomial functions. - How to determine if a binomial is a factor of a polynomial using the Remainder Theorem. - How to factor polynomials with a degree higher than quadratic. - How to solve polynomial equations by factoring. - How to determine the end behavior of polynomial functions. - How to sketch polynomial functions using the zeros and end behavior.	- Reason abstractly and quantitatively. - Model with mathematics. - Use appropriate tools strategically. - Attend to precision. - Look for and express regularity in repeated reasoning.
Unit 6	Rational Expressions and Equations (may be completed if time allows)		
Summary	In this unit studen ways. In simplest common factors e used to simplify r equations involvin extraneous solutio	s will discover that rational expressi orm, a rational expression has a num cept one. Addition, subtraction, multip ional expressions. The unit will con rational expressions, and developin	ss can be represented in different ator and denominator with no plication and division will be ude with students solving an understanding of an
Graduation Standards: (the number of the standard is referenced in the performance indicators listed in each unit.)			
HS.M.2B Understands and analyzes polynomial, rational, radical, and transcendental functions.			
Performance Indicators Assessed in Unit	- AR.A. 2 W problems. - AR.A. 6 R - AR.A. 9 So	ite expressions in equivalent forms write rational expressions ve equations and inequalities in one	reveal information and to solve
Understandings:		Students will know...	Students will be able to...
Students will understand that...		- how to simplify a rational expression.	- Reason abstractly and quantitatively.

- rational expressions have excluded values. - rational expressions can be simplified using the process of factoring. - rational expressions can be added, subtracted, multiplied and divided using the same methods of adding and subtracting rational numbers.		- how to perform operations with rational expressions including adding, subtracting, multiplying and dividing. - how to determine the excluded values of a rational expression. - how to solve equations involving rational expressions.	- Model with mathematics.. - Attend to precision.
Unit 7	Probability and Statistics		
Summary	In this unit student combinations, and demonstration of p	will investigate probability. Student robabilities involving both. Student obability and the use of expected va	will calculate permutations and will work with a hands on es.
Graduation Standards: (the number of the standard is referenced in the performance indicators listed in each unit.)			
HS.M.5.D Computes probability and uses known probability distributions to solve problems.			
Performance Indicators Assessed in Unit	- SR.A. 6 Un interpret da - SR.A. 7 Use in a uniform - SR.A. 8 Cal - SR.A. 9 Use	erstand independence and condition a. the rules of probability to compute p probability model. ulate expected values and use them probability to evaluate outcomes of	probability and use them to obabilities of compound events solve problems. cisions.
Understandings:		Students will know...	Students will be able to...
- Probability quantifies the likelihood that something will happen and enables us to make predictions and informed decisions. - Discussing and determining the likelihood of an event relies on recognizing when to utilize the fundamental counting principle and recognizing which type of probability is being used.		- how to use two-way frequency tables to find marginal, joint, and conditional relative frequencies. - how to solve problems involving independent and dependent events. - how to find probabilities (theoretical and conditional). - how to calculate expected values.	- Reason abstractly and quantitatively. - Model with mathematics. - Use appropriate tools strategically.

Summative Assessments/Retake

- Summative assessments will count as 70% of the grade.
- Students have the opportunity to retake summative assessments.
- The student must submit a retake form to the teacher within five (5) school days of the date that the summative assessment score is reported to the student.
- The highest score a student can receive on a retake or late assessment is a 75 .
- The score achieved on a retake will replace the current score (even if the score is lower).
- If a student is making up a test from an absence, that assessment will be graded up to 100 .

Make-up Work

Upon their return to school from an absence, it is the student's responsibility to secure make-up work from their teacher. The due date of the missed work will be one additional class period for each day of absence from that class or at the discretion of the teacher.

Grading of Formative Assessments

- Formative assessments will count as 30% of the grade.
- Formative assessments may be scored on either a 0-100 scale or a 0-4 scale.
- The 0-4 scale will be represented in Power School as $4=100,3=87,2=77$, and $1=67$.
- The method of scoring of formative assessments will be determined by assignment.

Finals / Midterms

An end of course Final Exam will be conducted, making up 10% of the students overall grade.

